
Analysis of Long-term Average Behaviors of Probabilistic Task
Systems

Yifan Cai

University of Pennsylvania

USA

caiyifan@seas.upenn.edu

Linh Thi Xuan Phan

University of Pennsylvania / Roblox

USA

linhphan@cis.upenn.edu

P.S. Thiagarajan

University of North Carolina at

Chapel Hill

USA

Chennai Mathematical Institute

India

thiagu@cs.unc.edu

Abstract
We present a Markov chain-based framework for studying the long-

term average behaviors of periodic real-time task systems in which

the tasks have stochastically varying computation times. In sharp

contrast to previous work, we construct our Markov chains w.r.t. to

a unit of time that is not required to be the hyperperiod of the task

system. Our chains have an important property called irreducibil-

ity, and this secures the mathematical basis for a simple sampling

procedure for estimating the long-term averages of interest. This is

significant because for task systems of practical interest, it will be

computationally infeasible to use hyperperiods to determine the

required expected values. Our experimental results show that our

method can be used to analyze long-term average behaviors – such

as deadline misses and weakly-hard constraint violations – with

high accuracy, and that it scales well to large systems (with up to

1000 tasks). We further demonstrate its practical utility using a case

study of a rover control system.

CCS Concepts
• Computer systems organization → Real-time systems; •
Theory of computation→Randomwalks andMarkov chains.

Keywords
Real-time systems, Markov chain, Ergodic theorem, weakly-hard

constraints, sampling

ACM Reference Format:
Yifan Cai, Linh Thi Xuan Phan, and P.S. Thiagarajan. 2024. Analysis of

Long-term Average Behaviors of Probabilistic Task Systems. In The 32nd
International Conference on Real-Time Networks and Systems (RTNS 2024),
November 06–08, 2024, Porto, Portugal. ACM, New York, NY, USA, 12 pages.

https://doi.org/10.1145/3696355.3696365

1 Introduction
Due to the continued increase in hardware/software complexity,

it has become extremely challenging to obtain tight worst-case

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

RTNS 2024, November 06–08, 2024, Porto, Portugal
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-1724-6/24/11

https://doi.org/10.1145/3696355.3696365

execution time bounds for modern real-time systems. As a result,

probabilistic real-time task models, where one or more of the timing

parameters such as task execution times are modeled by random

variables, have been used for analyzing real-time systems [10].

In the probabilistic setting, existing analysis techniques focus

primarily on worst-case properties, such as the worst-case deadline

miss probabilities. For many systems, however, it is also important

to consider long-term average behaviors. For instance, soft real-
time and latency-sensitive applications, such as real-time stream-

ing video/audio applications, typically require a certain quality of

service (QoS) defined based on long-term average performance

metrics. Likewise, in mixed-criticality real-time systems, for a non-

critical or low-criticality task, it suffices to ensure its long-term

average deadline miss rate is within a certain threshold. In the case

of feedback control systems too, control tasks (such as adaptive

cruise control and collision avoidance) can be designed to toler-

ate some deadline miss patterns without sacrificing stability and

quality of control [30]. For such control tasks, we only need to

ensure that the long-term average deadline miss rates are within

the tolerance levels specified by the control designers. A recent

trend [9, 19, 20, 24, 35] in this setting is to soften the deadline miss

requirements via weakly-hard constraints [6, 18]. For instance, the

weakly-hard constraint (𝑚,𝑘) demands that in any 𝑘 consecutive

invocations of a task, there must be at least𝑚 deadline hits. An im-

portant variant is: In any 𝑘 consecutive invocations of a task, there

cannot be𝑚 consecutive deadline misses. These kinds of guarantees

often require much fewer resources than worst-case guarantees,

while still yielding the desired performance. However, new types of

analysis are required here since existing techniques are primarily

designed for analyzing worst-case probabilities.

Motivated by these considerations, we present a technique for

estimating the long-term averages of properties associated with

probabilistic task systems. In particular, we focus on periodic task

systems in which the computation times of each task can vary

stochastically according to an associated probability distribution

over a finite set of computation times. Thus, as a first step, we

treat the computation times as independent random variables. As

we observe in connection with our case study (Sec. 5), this can

be a useful working hypothesis. This class of systems has been

extensively studied in the literature from various angles as we

describe in Sec. 6. Here we sketch our main ideas and results.

Overview. Our first goal is to formalize the notion of long-

term averages. Intuitively, it is the average number of, say, the

number of deadline misses of a task divided by the total number

https://orcid.org/0009-0003-8125-1054
https://orcid.org/0000-0002-3458-7511
https://orcid.org/0000-0002-5225-3056
https://doi.org/10.1145/3696355.3696365
https://doi.org/10.1145/3696355.3696365

RTNS 2024, November 06–08, 2024, Porto, Portugal Yifan Cai, Linh Thi Xuan Phan, and P.S. Thiagarajan

of deadlines in an unbounded time window. The question then

is what does an unbounded time window mean? The standard

abstraction for this idea is an infinite time window. Accordingly, we

define the infinite execution sequences of a probabilistic periodic

task system. Then one might define the long-term average as the

limit of averages of finite prefixes of increasing lengths of infinite

execution sequences. The catch here is one must ensure such a limit

always exists. We achieve this by establishing that the behavior of

the task systems can be modeled as a finite-state Markov chain and

that it captures the infinite execution sequences of the task system.

We further show that this Markov chain has a standard property

called irreducibility. Informally, it says that the state space of the

Markov chain is strongly connected. As a result, we can appeal to

a fundamental result called the ergodic theorem to guarantee that

sequences of averages of finite prefixes will converge to a definite

value called the expected value. As an important byproduct, we

obtain a simple sampling procedure for estimating the long-term

averages of properties such as deadline misses and weakly-hard

constraints.

A key aspect of ourMarkov chain construction is that, in contrast

to most prior research on Markov chain-based analysis of periodic

task systems, it is not based on hyperperiods (i.e., the least common

multiple of the periods of all the tasks). Instead, it is based on a

user-supplied notion of unit interval. This unit interval can be

much smaller than the hyperperiod, which can be enormous (e.g.,

10
7
in our rover control case study). Consequently, the sampling

procedure can be much more efficient (See Fig. 5 in Sec. 5 and the

accompanying remarks).

The finite-state Markov chains that arise from our work con-

stitute a fundamental model of stochastic processes with a rich

theory and a wide variety of applications. Hence, using them to

model the infinite behaviors of probabilistic task systems opens

up the possibility of developing many other analysis methods. In

particular, probabilistic model checking techniques [21] become

accessible.

Contributions. In summary, the paper makes the following

contributions: (1) Introducing a finite-state Markov chain model

that represents the infinite behaviors of periodic probabilistic task

systems. (2) Establishing the property called irreducibility for the

Markov chain model. This provides a mathematical basis for esti-

mating long-term averages of properties such as deadline misses

and violations of weakly-hard constraints using lightweight sam-

pling procedures. (3) Building this theory without basing it on the

hyperperiods of the task systems. To the best of our knowledge,

this is the first time this has been achieved. Another novel aspect

of our method is that it can smoothly handle a rich language of

weakly-hard constraints. (4) Presenting an experimental evaluation

demonstrating that our sampling-based method has high accuracy

for both synthetic workloads and a real-world rover control system.

Our evaluation also shows that the method scales well.

Organization of the paper. In Sec. 2, we formulate the system

model, define the basic notion of a configuration, which captures

the state of the system at a given time point, and define the infinite

execution sequences of the system. In Sec. 3, we introduce unit

intervals and Markov chain preliminaries. Sec. 4 is the technical

core of the paper. First, we define a one-step transition relation

between configurations and then lift it to a multi-step relation.

We then establish the Markovian properties of these transition

relations. This leads to an infinite state Markov chain representing

the set of execution sequences of the task system. Each state of this

chain will represent a unit stretch of the behavior of the system.

Next, by defining a natural equivalence relation over the states

of this chain, we construct a finite state Markov chain, the key

object in our study. We then show that this chain is irreducible and

consequently its so-called stationary distribution – explained in

Section 3 – captures the long-term averages of many properties of

interest. Furthermore, it provides the formal basis for our simple

sampling procedure for estimating these averages. These results are

established assuming a preemptive static priority policy. However,

our technique can be extended in a straightforward manner to

dynamic priority schemes such as EDF. We then sketch how our

construction can be used to analyze weakly-hard constraints. In

Sec. 5, we present our experimental results. We discuss related work

in Sec. 6 and conclude with future directions in Sec. 7.

2 The System Model
The system consists of a set of periodic tasks {𝜏1, 𝜏2, . . . , 𝜏𝑛} running
on a single processor. Each task 𝜏𝑖 has a period𝑇𝑖 , a deadline𝐷𝑖 ≤ 𝑇𝑖 ,
and an initial offset 𝜑𝑖 ≥ 0 (i.e., jobs of 𝜏𝑖 will be released at time

points 𝜑𝑖 + 𝑘𝑇𝑖 for 𝑘 ≥ 0). We consider a preemptive static priority

scheduling scheme. As mentioned earlier, our method can be easily

extended to a non-preemptive or dynamic priority scheme such as

EDF. For convenience, we assume 𝐷𝑖 = 𝑇𝑖 and 𝜑𝑖 = 0 for 1 ≤ 𝑖 ≤ 𝑛.
Our results will easily extend to the case 𝐷𝑖 < 𝑇𝑖 . The case 𝐷𝑖 > 𝑇𝑖
doesn’t come into play since, as in many previous studies, we adopt

the policy that a job is killed as soon it misses its deadline.

A key feature of our model is the computation times of a job

can vary stochastically. To capture this, we assume a finite set of

computation times 𝐶𝑖 = {𝑐𝑖
1
, 𝑐𝑖
2
, . . . , 𝑐𝑖

𝐾𝑖
} where 0 < 𝑐𝑖

1
< 𝑐𝑖

2
<

. . . < 𝑐𝑖
𝐾𝑖

and a probability distribution 𝑃𝑟𝑖 : 𝐶𝑖 → (0, 1] for each
𝜏𝑖 . As is common in prior work, we assume that for each job 𝜏𝑖, 𝑗
released by a task 𝜏𝑖 during an execution, its execution time is

chosen independently (of previous history and jobs of other tasks)

from𝐶𝑖 according to 𝑃𝑟𝑖 . In future work, we plan to explore settings

in which this assumption is relaxed.

Formally, we focus on S = {(𝑇𝑖 , 𝐷𝑖 ,𝐶𝑖 , 𝑃𝑟𝑖)}1≤𝑖≤𝑛 , a periodic

task system, with 𝐷𝑖 = 𝑇𝑖 for 1 ≤ 𝑖 ≤ 𝑛. Following [7], we assume

that the time domain T is discretized w.r.t. to a chosen micro time

unit 𝛾 (e.g., the processor cycle). Thus, T = {𝑘 · 𝛾 | 𝑘 ≥ 0} with 𝑘
ranging over N0, the set of non-negative integers. All the tempo-

ral quantities encountered, such as 𝑇𝑖 and the members of 𝐶𝑖 , are

assumed to be integral multiples of 𝛾 and hence will be viewed as

integers with the factor 𝛾 almost always suppressed.

2.1 Configurations
We begin with 𝐽∞

𝑖
= {𝜏𝑖,𝑘 | 𝑘 ≥ 0}, the infinite set of jobs released

by 𝜏𝑖 along an infinite execution sequence, with 𝜏𝑖,𝑘 being released

at time 𝑘𝑇𝑖 . This leads to 𝐽
∞ =

⋃
𝑖 𝐽

∞
𝑖
. As done here, we will often

abbreviate the index set 1 ≤ 𝑖 ≤ 𝑛 as just 𝑖 . In addition, we will

say that a job belongs to the task 𝜏𝑖 if it is a member of 𝐽∞
𝑖
. The

discretized time points along an infinite run will be denoted as

non-negative integers with 𝑡 representing the time point 𝑡 · 𝛾 .

Analysis of Long-Term Average Behaviors of Probabilistic Task Systems RTNS 2024, November 06–08, 2024, Porto, Portugal

terminates

Figure 1: An example of configurations at time 𝑡 = 0.
Configurations. A configuration describes the state of the system

at time point 𝑡 . Formally, it is a triple u = (𝑡, 𝐴, 𝑅), where 𝑡 is a
non-negative integer, and 𝐴 and 𝑅 are defined as follows:

(1) 𝐴 records information concerning the set of active jobs that
were released before or at 𝑡 which have neither missed their

deadlines nor have finished computing at 𝑡 . Each member of

𝐴 will be of the form (𝜏𝑖 , 𝑡𝑖 , 𝑐𝑖 , 𝑑𝑖 , 𝑠𝑡𝑖), where:
• 𝜏𝑖 is the task that this job belongs to.

• 𝑡𝑖 is the time at which this job was released. Since the job

is active at time 𝑡 , we require 𝑡𝑖 ≤ 𝑡 < 𝑡𝑖 +𝑇𝑖 . We note that

for some non-negative integer 𝑙 , we will have 𝑡𝑖 = 𝑙𝑇𝑖 .

• 𝑐𝑖 ∈ 𝐶𝑖 is the computation time assigned to the job (with

probability 𝑃𝑟𝑖 (𝑐𝑖)) when it is released.

• 𝑑𝑖 is the remaining computation time of this job at 𝑡 , where

0 < 𝑑𝑖 ≤ 𝑐𝑖 .
• 𝑠𝑡𝑖 ∈ {0, 1} is the status of this job during [𝑡, 𝑡 + 1), where
1 denotes that the job is currently running, and 0 denotes

that it is currently waiting. We require that at most one

job in 𝐴 has status 1, and this job (if 𝐴 is non-empty) has

the highest priority among all the active jobs in 𝐴.

(2) 𝑅 is the set of tasks that are at rest at 𝑡 . Each member of 𝑅

will be a pair (𝜏𝑖 , 𝑡𝑖) where 𝑡𝑖 is the time point at which the

last completed job belonging to 𝜏𝑖 was released but whose

next instance has not been released up to and including 𝑡 .

Thus, we require that there exists a non-negative integer 𝑙

such that 𝑡𝑖 = 𝑙 ·𝑇𝑖 and 𝑡𝑖 < 𝑡 < 𝑡𝑖 +𝑇𝑖 .
We also require that each task must appear in 𝐴 or 𝑅, but

not both. More precisely, let T𝐴 = {𝜏𝑖 | 𝑎 ∈ 𝐴 and 𝑎(1) = 𝜏𝑖 }
and T𝑅 = {𝜏𝑖 | 𝑟 ∈ 𝑅 and 𝑟 (1) = 𝜏𝑖 }. We require T𝐴 ∩ T𝑅 = ∅
and T𝐴 ∪ T𝑅 = {𝜏𝑖 }𝑖 . We use 𝑎(1) to denote the first component

of the 5-tuple 𝑎, and 𝑟 (1) to denote the first component of the pair 𝑟 .

Example. Fig. 1 shows an example of a configuration at 𝑡 = 0 for a

task system with two tasks 𝜏1 and 𝜏2 with periods𝑇1 = 6 and𝑇2 = 7,

respectively. At 𝑡 = 0, since the last job of 𝜏2 released at 𝑡2 = −6 has
finished at −3, and its new job hasn’t been released, only 𝜏1 has an

active job. This job was released at 𝑡1 = −2 with computation time

𝑐1 = 4. It has finished 2 unit time of computation and is running at

𝑡 = 0 and thus 𝑑1 = 2 and 𝑠𝑡1 = 1.

We note that the last component of each member of 𝐴 is

uniquely determined by the static priority scheme we are assuming.

Hence, we will not spell out the last component of the elements of

𝐴. In other words, from now on, a configuration will be represented

as a triple (𝑡, 𝐴, 𝑅) with each member of𝐴, a quadruple (𝜏𝑖 , 𝑡𝑖 , 𝑐𝑖 , 𝑑𝑖).
We letH denote the set of all configurations.

Transitions.We next specify how the system transitions from one

configuration to the next one.

Definition 1. Let u = (𝑡, 𝐴, 𝑅) and v = (𝑡 ′, 𝐴′, 𝑅′) be two con-
figurations. Then, u −→ v iff the following conditions hold:
C1. 𝑡 ′ = 𝑡 + 1.

C2. (𝜏 𝑗 , 𝑡 𝑗 , 𝑐 𝑗 , 𝑑 𝑗) ∈ 𝐴′ iff:
C2.1. 𝑡 𝑗 = 𝑡 + 1 = 𝑘𝑇𝑗 for some 𝑘 ∈ N0 and 𝑐 𝑗 ∈ 𝐶 𝑗 and 𝑑 𝑗 = 𝑐 𝑗 ,

or
C2.2. 𝑡 + 1 = 𝑘𝑇𝑗 for no 𝑘 ∈ N0 and there exists (𝜏 𝑗 , 𝑡 𝑗 , 𝑐 𝑗 , 𝑑) ∈ 𝐴

with 𝑑 − 𝑠𝑡 > 0 and 𝑑 𝑗 = 𝑑 − 𝑠𝑡 .
C3. (𝜏 𝑗 , 𝑡 𝑗) ∈ 𝑅′ iff:
C3.1. (𝜏 𝑗 , 𝑡 𝑗) ∈ 𝑅 and 𝑡 + 1 = 𝑘𝑇𝑗 for no 𝑘 ∈ N0, or
C3.2. there exists (𝜏 𝑗 , 𝑡 𝑗 , 𝑐, 1) ∈ 𝐴 such that: (i) 𝜏 𝑗 has the highest

priority among the active jobs at 𝑡 and (ii) 𝑡 + 1 = 𝑘𝑇𝑗 for
no 𝑘 ∈ N0

(C1) states that v is a configuration that holds at 𝑡 + 1. (C2.1)

indicates that a new job of 𝜏 𝑗 is released at 𝑡 + 1, with computation

time 𝑐 𝑗 and the remaining computation time also 𝑐 𝑗 . On the other

hand, (C2.2) indicates that an existing job of 𝜏 𝑗 is active at 𝑡 and

remains active at 𝑡 + 1 (since at 𝑡 + 1, this job still has at least 1 unit

of computation remaining and has not reached its deadline yet),

and its remaining execution time at 𝑡 + 1 is the same (if 𝑠𝑡𝑖 = 0) or

one less (if 𝑠𝑡𝑖 = 1) than at 𝑡 .

(C3.1) states that 𝜏 𝑗 is at rest at 𝑡 and will remain so at 𝑡 + 1

since its next instance will be released at a time point later than

𝑡 + 1. As for (C3.2), 𝜏 𝑗 is active and executing at time 𝑡 , and has only

one computation unit left. Hence, it would be at rest at 𝑡 + 1 since

its next instance will be released only at a later time point. The

configuration v is a successor of the configuration u iff u −→ v.
Finally, (𝑡, 𝐴, 𝑅) is an initial configuration if and only if 𝑡 = 0,

𝐴 = {(𝜏𝑖 , 0, 𝑐𝑖 , 𝑐𝑖) | 𝑐𝑖 ∈ 𝐶𝑖 }, and 𝑅 = ∅. We let H𝑖𝑛 denote the set

of initial configurations of S.
Traces and execution sequences.

(1) A finite trace of S is a sequence of configurations 𝜌 =

u0u1 · · · u𝑘 such that u𝑙 −→ u𝑙+1 for 0 ≤ 𝑙 < 𝑘 . The trace 𝜌
is said to start from u0.

(2) An infinite trace is an infinite sequence of configurations

such that its every finite prefix is a finite trace.

(3) A finite execution sequence is a finite trace that starts from

an initial configuration.

(4) An infinite execution sequence is defined in an obvious way.

We denote by 𝐵S the set of infinite execution sequences of S and

view it as the behavior of S.
We conclude this sectionwith a useful result about the successors

of a configuration: every finite execution sequence can be extended

to a longer one, and hence the behavior of S is assured to be non-

empty. This result will also form the basis of the Markov chain

constructions developed in the next section.

To start with, let u = (𝑡, 𝐴, 𝑅) be a configuration. Then 𝑋u cap-

tures information about the set of jobs released at 𝑡 + 1. It is the

subset of tasks defined as: 𝜏𝑖 ∈ 𝑋u iff there exists (𝜏𝑖 , 𝑡𝑖 , 𝑐𝑖 , 𝑑𝑖) ∈ 𝐴
or (𝜏𝑖 , 𝑡𝑖) ∈ 𝑅 such that 𝑡𝑖 +𝑇𝑖 = 𝑡 + 1.

Proposition 2.1. Let u = (𝑡, 𝐴, 𝑅) be a configuration.
(1) If 𝑋u = ∅, then u has exactly one successor configuration.
(2) Suppose 𝑋u = {𝜏𝑖1 , 𝜏𝑖2 , · · · , 𝜏𝑖𝑘 }. Then, for each c ∈ 𝐶𝑖1 ×

𝐶𝑖2 × · · · ×𝐶𝑖𝑘 , there exists a unique successor configuration
vc = (𝑡 + 1, 𝐴c, 𝑅c) of u satisfying: For 1 ≤ 𝑙 ≤ 𝑘 , (𝜏𝑖𝑙 , 𝑡 +
1, c(𝑙), c(𝑙)) ∈ 𝐴c.

Proof. Suppose 𝑋u = ∅. Consider the triple v = (𝑡 + 1, 𝐴′, 𝑅′)
given by:

RTNS 2024, November 06–08, 2024, Porto, Portugal Yifan Cai, Linh Thi Xuan Phan, and P.S. Thiagarajan

(1) Suppose (𝜏𝑖 , 𝑡𝑖 , 𝑐𝑖 , 𝑑𝑖) ∈ 𝐴 and 𝑠𝑡𝑖 = 1. If 𝑑𝑖 = 1 then (𝜏𝑖 , 𝑡𝑖) ∈
𝑅′. If 𝑑𝑖 > 1 then (𝜏𝑖 , 𝑡𝑖 , 𝑐𝑖 , 𝑑𝑖 − 1) ∈ 𝐴′

.

(2) If (𝜏𝑖 , 𝑡𝑖 , 𝑐𝑖 , 𝑑𝑖) ∈ 𝐴 and 𝑠𝑡𝑖 = 0 then (𝜏𝑖 , 𝑡𝑖 , 𝑐𝑖 , 𝑑𝑖) ∈ 𝐴′
.

(3) If (𝜏𝑖 , 𝑡𝑖) ∈ 𝑅 then (𝜏𝑖 , 𝑡𝑖) ∈ 𝑅′.
From the definition of a configuration and the fact that 𝑋u = ∅, it
follows easily that v is a configuration, is uniquely induced by u,
and is a successor configuration of u. We note that 𝑋u = ∅ also

implies that whether 𝑠𝑡𝑖 = 0 or 𝑠𝑡𝑖 = 1 during [𝑡, 𝑡 + 1), there can
be no deadline miss occurring at 𝑡 + 1.

Next, assume that 𝑋u = {𝜏𝑖1 , 𝜏𝑖2 , · · · , 𝜏𝑖𝑘 }. For each c ∈ 𝐶𝑖1 ×
𝐶𝑖2 × · · · × 𝐶𝑖𝑘 , let (𝑡 + 1, 𝐴c, 𝑅c) be given by:

(1) For 1 ≤ 𝑙 ≤ 𝑘 , (𝜏𝑖𝑙 , 𝑡 + 1, c(𝑙), c(𝑙)) ∈ 𝐴′
.

(2) Suppose 𝜏𝑖 ∉ 𝑋u.
• If (𝜏𝑖 , 𝑡𝑖 , 𝑐𝑖 , 𝑑𝑖) ∈ 𝐴, 𝑑𝑖 = 1 and 𝑠𝑡𝑖 = 1 then (𝜏𝑖 , 𝑡𝑖) ∈ 𝑅′.
• If (𝜏𝑖 , 𝑡𝑖 , 𝑐𝑖 , 𝑑𝑖) ∈ 𝐴 and 𝑑𝑖 > 1 or 𝑠𝑡𝑖 = 0 then

(𝜏𝑖 , 𝑡𝑖 , 𝑐𝑖 , 𝑑𝑖) ∈ 𝐴′
.

• If (𝜏𝑖 , 𝑡𝑖) ∈ 𝑅 then (𝜏𝑖 , 𝑡𝑖) ∈ 𝑅′.
From the definitions, it follows that (𝑡 + 1, 𝐴c, 𝑅c) is a configuration,
is uniquely determined by u, and is a successor configuration of u.
This proves the second part of the proposition. □

3 Unit Intervals and Markov Chains
3.1 Unit intervals
We will construct a finite-state Markov chain relative to a given

unit of time Δ. We require Δ to be an integral multiple of time but

again with the factor 𝛾 suppressed. A state of the Markov chain

will be a trace of length Δ. At the end of the current Δ interval, the

chain will transition to the next trace of length Δ. We assume that

Δ has been fixed based on some pragmatic considerations. Some

possible choices for Δ are max({𝑇𝑖 }), 𝐾 ·max({𝑇𝑖 }) for some small

positive integer𝐾 , or the lcm of the periods of a small subset of {𝑇𝑖 }.
A large Δ (e.g., Δ = 𝑙𝑐𝑚({𝑇𝑖 }𝑖) = hyperperiod) will cause a state

to carry excessive information, while a small Δ (e.g., Δ = 𝛾) will

require longer sequences of paths to be sampled before instances of

the properties of interest appear in sufficient numbers. The impact

of the choice of Δ is evaluated more systematically in Sec. 5.

3.2 Markov chain preliminaries
Our sampling-based analysis technique will be based on finite state
Markov chains. However, we will first represent the behavior of

S with an infinite-state Markov chain and then quotient it into a

finite-state chain. Hence we begin with:

Definition 2. A Markov chain is a structure 𝑀 = (𝑆, 𝑆𝑖𝑛, 𝑃)
where:

(1) 𝑆 is a non-empty countable set of states.
(2) 𝑆𝑖𝑛 ⊆ 𝑆 is a set of initial states.
(3) 𝑃 : 𝑆 × 𝑆 → [0, 1] is the probabilistic transition function

satisfying: for every 𝑠 ∈ 𝑆 , ∑𝑠′∈𝑆 𝑃 (𝑠, 𝑠′) = 1.

Let 𝑀 = (𝑆, 𝑆𝑖𝑛, 𝑃) be a finite-state Markov chain with 𝑆 =

{𝑠1, 𝑠2, · · · , 𝑠𝑚}. Then 𝑀 can be represented as the edge labeled

directed graph 𝐺𝑀 = (𝑆, 𝐸) where 𝐸 = {(𝑠𝑖 , 𝑠 𝑗) | 𝑃 (𝑠𝑖 , 𝑠 𝑗) > 0}. If
(𝑠𝑖 , 𝑠 𝑗) ∈ 𝐸 then 𝑃 (𝑠𝑖 , 𝑠 𝑗) is the label on this edge. A fundamental

property of Markov chains is irreducibility. 𝑀 is said to be irre-

ducible iff𝐺𝑀 is a strongly connected graph. This property implies

that 𝑀 has a unique stationary distribution over its set of states.

This is best brought out in an algebraic setting.

The transition matrix of 𝑀 , also denoted as 𝑀 by abuse of no-

tation, is the |𝑆 | × |𝑆 | matrix satisfying: 𝑀 (𝑖, 𝑗) = 𝑃 (𝑠𝑖 , 𝑠 𝑗). This
matrix 𝑀 is viewed as a transformer of probability distributions

over the states of the chain. If 𝜇 is a distribution over 𝑆 , then𝑀 will

transform it into a new distribution 𝜇′ in one step. This one-step

transformation is represented as the matrix multiplication 𝜇 ·𝑀 = 𝜇′

where a distribution over 𝑆 is represented as a 1 ×𝑚 row vector.

𝜋 is a stationary distribution of𝑀 iff 𝜋 ·𝑀 = 𝜋 . The basic prop-

erty of an irreducible Markov chain is that it has a unique stationary
distribution [28]. The key feature of the stationary distribution is

that it captures the “long-term average values” of quantities associ-

ated with the dynamics of the chain. Suppose 𝜋 is the stationary

distribution of the irreducible finite-state Markov chain𝑀 whose

set of states is 𝑆 . Then intuitively, in the long run, if we guess the

current state of𝑀 to be 𝑠 , then this guess will be correct with prob-

ability 𝜋 (𝑠). Equally important, the average number of times that

𝑠 will appear in any randomly sampled (i.e. sampled according to

the transition probabilities) finite path, will, in the limit, converge

to 𝜋 (𝑠). This follows from the ergodic theorem [28] for irreducible

Markov chains which we state next.

A finite path of 𝑀 is a sequence 𝜉 = 𝑠0𝑠1 · · · 𝑠𝑚 such that

𝑃 (𝑠𝑙 , 𝑠𝑙+1) > 0 for 0 ≤ 𝑙 < 𝑚. We define |𝜉 | = 𝑚 where |𝜉 | de-
notes the length of 𝜉 and let 𝜉 (𝑙) = 𝑠𝑙 for 0 ≤ 𝑙 ≤ 𝑚. If 𝜉 and 𝜉 ′

are two finite paths then 𝜉 ≺ 𝜉 ′ denotes that 𝜉 is a prefix of 𝜉 ′ and
|𝜉 | < |𝜉 ′ |. That is, 𝜉 is a strict prefix of 𝜉 ′.

Next, we define a random variable over 𝑆 to be a function 𝑓 : 𝑆 →
RwhereR is the set of reals. Suppose𝑀 with 𝑆 as its set of states is a

finite-state irreducible Markov chain, 𝜋 is its stationary distribution

and 𝑓 is a random variable over 𝑆 . Then, 𝑓 =
∑
𝑠∈𝑆 𝜋 (𝑠) · 𝑓 (𝑠).

Often 𝑓 is written as E(𝑓) and is called the expectation of 𝑓 . The

following classic result, often called the ergodic theorem, provides

the mathematical basis for our sampling procedure.

Theorem 1 (Theorem 1.10.2 in [28]). Let𝑀 = (𝑆, 𝑆𝑖𝑛, 𝑃) be an
irreducible finite-state Markov chain and 𝑓 : 𝑆 → R be a random
variable. Suppose {𝜉𝑘 }𝑘≥1 is an infinite sequence of finite paths with
|𝜉𝑘 | = 𝑘 and 𝜉𝑘 ≺ 𝜉𝑘+1 for 𝑘 ≥ 1. Then,

lim𝑘→∞
1

𝑘

∑𝑘
𝑗=1 𝑓 (𝜉𝑘 (𝑗)) = 𝑓 (with probability 1).

To be precise, the theorem as stated above is a specialized version

of Theorem 1.10.2 (ergodic theorem) in [28]. In the original version,

𝑓 is required to be a bounded function. This is assured in our case

since 𝑆 is a finite set. The theorem also requires𝑀 to have a property

called positive recurrence. Again, this is guaranteed in our case

since𝑀 is an irreducible finite-state chain [28]. Finally, the proviso

“with probability 1” is a measure-theoretic technicality. Loosely

speaking, it says that under the usual probability measure defined

over collections of infinite paths of𝑀 , the set of infinite paths for

which the claimed convergence property holds will have probability

measure 1. Note that the sequence of finite paths {𝜉𝑘 }𝑘 with 𝜉𝑘 ≺
𝜉𝑘+1 uniquely defines an infinite path of theMarkov chain. Thus, the

sequence of averages defined in the ergodic theorem are averages

taken over the finite prefixes of increasing lengths of a randomly

sampled infinite path of the chain; and this sequence will almost

certainly converge to the expectation of the random variable.

Analysis of Long-Term Average Behaviors of Probabilistic Task Systems RTNS 2024, November 06–08, 2024, Porto, Portugal

An important consequence of the ergodic theorem is that this

convergence property does not depend on the starting state of the

randomly sampled path.

4 The Main Results
Through this section, we fix a unit interval Δ ≥ 1. We begin by

deriving two important probabilistic transition relations.

4.1 Two probabilistic transitions
To start with we associate the set 𝛼u and the probability value 𝑝𝑟 (u)
with the configuration u. They are defined as follows.

Let u = (𝑡, 𝐴, 𝑅). Then, 𝛼u = {(𝜏𝑖 , 𝑐𝑖) | (𝜏𝑖 , 𝑡, 𝑐𝑖 , 𝑐𝑖) ∈ 𝐴}. Thus,
𝛼u records the stochastically assigned computation times to the

jobs released at 𝑡 . If 𝛼u = {(𝜏𝑖1 , 𝑐𝑖1), (𝜏𝑖2 , 𝑐𝑖2) · · · , (𝜏𝑖𝑘 , 𝑐𝑖𝑘)}, then
𝑝𝑟 (u) = ∏

1≤𝑙≤𝑘 𝑃𝑟𝑖𝑙 (𝑐𝑖𝑙). Hence, 𝑝𝑟 (u) is the product of the prob-
abilities with which the computation times of the jobs released at 𝑡

are chosen. If 𝛼u = ∅, then 𝑝𝑟 (u) = 1 by convention.

Definition 3. Let u = (𝑡, 𝐴, 𝑅) and v = (𝑡 ′, 𝐴′, 𝑅′) be two config-
urations and 𝑝 ∈ (0, 1]. Then u

𝑝
−→
1

v iff v is a successor configuration

of u (and hence 𝑡 ′ = 𝑡 + 1) and 𝑝𝑟 (v) = 𝑝 .

Recall that H is the set of configurations of S. It will be con-
venient to represent this probabilistic transition relation as the

function 𝑃1 : H × H → [0, 1] given by 𝑃1 (u, v) = 𝑝 , if u
𝑝

−→
1

v.

Otherwise 𝑃1 (u, v) = 0. It will also be convenient to denote by

𝑠𝑢𝑐𝑐1 (u) the set of configurations {v | 𝑃1 (u, v) > 0}. The next ob-
servation is key to our Markov chain constructions.

Lemma 2. Let u be a configuration. Then
∑
v∈𝑠𝑢𝑐𝑐1 (u) 𝑃

1 (u, v) = 1

Proof. If 𝑋u = ∅ then there exists a unique v such that

𝑠𝑢𝑐𝑐1 (u) = {v}. Furthermore, we are assured that 𝛼v = ∅ and

hence 𝑝𝑟 (v) = 1. This leads to

∑
w∈𝑠𝑢𝑐𝑐1 (u) 𝑃

1 (u,w) = 1.

So assume that𝑋u = {𝜏𝑖1 , 𝜏𝑖2 , · · · , 𝜏𝑖𝑘 }. LetC = 𝐶𝑖1×𝐶𝑖2×· · ·×𝐶𝑖𝑘 .
Then according to Prop.2.1, for each c ∈ C, there exists a unique
successor configuration vc = (𝑡 + 1, 𝐴c, 𝑅c) of u satisfying: for

1 ≤ 𝑙 ≤ 𝑘 , (𝜏𝑖𝑙 , 𝑡 + 1, c(𝑙), c(𝑙)) ∈ 𝐴c. This implies that 𝛼vc =

{(𝜏𝑖𝑙 , c(𝑙)) | 1 ≤ 𝑙 ≤ 𝑘} for each c ∈ C, which in turn implies that

𝑝𝑟 (vc) =
∏

1≤𝑙≤𝑘 𝑃𝑟𝑖𝑙 (c(𝑙)). Furthermore,

∑
v∈𝑠𝑢𝑐𝑐1 (u) 𝑃

1 (u, v) =∑
c∈C 𝑝c where 𝑝c = 𝑝𝑟 (vc) for c ∈ C.
We now proceed by induction on 𝑘 . If 𝑘 = 1 then C = 𝐶𝑖1 . Clearly,

𝑝𝑟 (𝛼v𝑐) = 𝑃𝑟𝑖1 (𝑐) for 𝑐 ∈ 𝐶𝑖1 . But then
∑
𝑐∈𝐶𝑖

1

𝑃𝑟𝑖1 (𝑐) = 1.

So assume that 𝑘 > 1. As before, let 𝑝c = 𝑝𝑟 (vc) for c ∈ C.
Then

∑
c∈C 𝑝c =

∑
c′∈C′ 𝑝c′ · (

∑
𝑐∈𝐶𝑖𝑘

𝑃𝑟𝑖𝑘 (𝑐)) where C′ = 𝐶𝑖1 ×
𝐶𝑖2 × · · · ×𝐶𝑖𝑘−1 . From the proof of the basis step, it follows that∑
𝑐∈C𝑖𝑘

𝑃𝑟𝑖𝑘 (𝑐) = 1. Thus

∑
c∈C 𝑝c =

∑
c′∈C′ 𝑝c′ . The result now

follows from the induction hypothesis. □

We next extend

𝑝
−→
1

to traces of length Δ. This is motivated by

the fact that the states of the infinite-state chain we wish to first

construct will be traces of length Δ. To define this extension, we first
lift 𝑝𝑟 to a non-null sequence of configurations x = u0u1 · · · u𝑚 via:

𝑝𝑟 (x) = ∏
0≤𝑙≤𝑚 𝑝𝑟 (u𝑙). Next, in what follows,𝑇𝑅Δ will denote the

set of traces of length Δ. Finally, if s ∈ 𝑇𝑅Δ with s = u0u1 · · · uΔ−1,
then where convenient, we shall view s to be the map s : {0, 1,Δ −
1} → H with s(𝑘) = u𝑘 for 0 ≤ 𝑘 < Δ. Now let s, s′ ∈ 𝑇𝑅Δ. Then

s
𝑝

−→
Δ

s′ iff (i) 𝑝 = 𝑝𝑟 (s′) and (ii) s′ (0) is a successor configuration

of s(Δ− 1). We now extend the function 𝑃1 to 𝑃Δ via: 𝑃Δ (s, s′) = 𝑝
if s

𝑝
−→
Δ

s′; otherwise, 𝑃Δ (s, s′) = 0. As before, it will also be

convenient to define 𝑠𝑢𝑐𝑐Δ (s) = {s′ | 𝑃Δ (s, s′) > 0}. This leads to
the next lemma.

Lemma 3. Let s ∈ 𝑇𝑅Δ. Then
∑
s′∈𝑠𝑢𝑐𝑐Δ (s) 𝑃

Δ (s, s′) = 1

The proof follows easily by induction on Δwith Lemma 2 serving

as the proof of the basis step.

4.2 The infinite and finite-state Markov chains
We can now construct the infinite-state Markov chain𝑀 for S.

Definition 4. 𝑀 = (𝑆, 𝑆𝑖𝑛, 𝑃) where:
(1) 𝑆𝑖𝑛 ⊆ 𝑇𝑅Δ is given by: s ∈ 𝑆𝑖𝑛 iff s(0) ∈ H𝑖𝑛

(2) 𝑆 is the least subset set of 𝑇𝑅Δ satisfying:
• 𝑆𝑖𝑛 ⊆ 𝑆
• If s ∈ 𝑆 and s′ ∈ 𝑠𝑢𝑐𝑐Δ (s), then s′ ∈ 𝑆 .

(3) 𝑃 is 𝑃Δ restricted to 𝑆 × 𝑆 .

Lemma 4. (1) Suppose s ∈ 𝑆 and s(0) = (𝑡, 𝐴, 𝑅). Then there
exists𝑚 ≥ 0 such that 𝑡 =𝑚Δ.

(2) 𝑀 is a Markov chain.

Proof. Suppose s ∈ 𝑆𝑖𝑛 and s(0) = u = (𝑡, 𝐴, 𝑅). Then 𝑡 = 0

because u is an initial configuration by the definition of 𝑆𝑖𝑛 . Assume

inductively that s ∈ 𝑆 , s(0) = u = (𝑡, 𝐴, 𝑅) and 𝑡 =𝑚Δ. If 𝑃 (s, s′) >
0 and s′ (0) = v = (𝑡 ′, 𝐴′, 𝑅′) then 𝑡 ′ = (𝑚 + 1)Δ. This follows
from the fact that s is a trace of length Δ and s′ (0) is a successor of
s(Δ− 1). The first part of the result now follows from the inductive

definition of 𝑆 .

Next, we observe that due to the first part of the lemma, 𝑆 can be

partitioned as 𝑆 = {𝑆0, 𝑆1, 𝑆2 · · · } where 𝑆𝑚 = {s | s(0) (1) = 𝑚Δ}.
Here s(0) (1) =𝑚Δ is the time component of the first configuration

in the trace s. According to Prop. 2.1, a configuration can have at

most |𝐶1 | × |𝐶2 | × · · · × |𝐶𝑛 | = 𝐾 successor configurations. This

implies that for every s ∈ 𝑆 , |{s′ | 𝑃 (s, s′) > 0}| is of size at most

𝐾Δ
. Hence 𝑆𝑚 is a finite set for every𝑚, which implies that 𝑆 is the

countable union of finite sets and is hence countable.

From Lemma 3 it now follows that𝑀 is a Markov chain. □

We next derive a finite-state irreducible Markov chain representa-

tion of the behavior of S. We first define the equivalence relation ≈
over the set of configurations and then lift it to 𝑆 . Let u = (𝑡, 𝐴, 𝑅)
and v = (𝑡 ′, 𝐴′, 𝑅′) be two configurations. Then u ≈ v iff the

following conditions are satisfied:

(1) (𝜏𝑖 , 𝑡𝑖 , 𝑐𝑖 , 𝑑𝑖) ∈ 𝐴 iff there exists (𝜏𝑖 , 𝑡 ′𝑖 , 𝑐
′
𝑖
, 𝑑′
𝑖
) ∈ 𝐴′

such that

𝑡 − 𝑡𝑖 = 𝑡 ′ − 𝑡 ′𝑖 , 𝑐𝑖 = 𝑐
′
𝑖
and 𝑑𝑖 = 𝑑

′
𝑖

(2) (𝜏𝑖 , 𝑡𝑖) ∈ 𝑅 iff there exists (𝜏𝑖 , 𝑡 ′𝑖) ∈ 𝑅
′
such that 𝑡−𝑡𝑖 = 𝑡 ′−𝑡 ′𝑖

Clearly, ≈ is an equivalence relation. Basically, it asserts that the

active jobs in two equivalent states have the same release times

relative to their current times and in all other respects they are

identical. Furthermore, the same holds for all the jobs at rest as

well. We let [u] denote the ≈-equivalence class containing u. The
following characterization of≈ is key to constructing the finite-state

Markov chain𝑀 .

RTNS 2024, November 06–08, 2024, Porto, Portugal Yifan Cai, Linh Thi Xuan Phan, and P.S. Thiagarajan

Lemma 5. (1) ≈ is of finite index. In other words, {[u] | u ∈ H}
is a finite set.

(2) Suppose u ≈ v and u
𝑝

−→
1

u′. Then, there exists v′ such that

v
𝑝

−→
1

v′ and u′ ≈ v′.

Proof. Let u be a configuration. Then we define û = (𝐴, 𝑅)
where 𝐴 = {(𝜏𝑖 , 𝑡 − 𝑡𝑖 , 𝑐𝑖 , 𝑑𝑖) | (𝜏𝑖 , 𝑡𝑖 , 𝑐𝑖 , 𝑑𝑖) ∈ 𝐴} and 𝑅 = {(𝜏𝑖 , 𝑡 −
𝑡𝑖) | (𝜏𝑖 , 𝑡𝑖) ∈ 𝑅}. We claim that 𝑍 = {û | u ∈ H} is a finite set. To
see this, we first note that there can be only finitely many sets of

the form 𝐴. This is so since the first component of an element of

𝐴 can take only 𝑛 different values. Next, the second component of

an element can take values only in the set {0, 1, · · · ,max{𝑇𝑖 }𝑖 } due
to the 𝛾-discretization of the time domain and the definition of a

configuration. Next, the third element can take at most max{|𝐶𝑖 |}𝑖
different values. Since 𝑑𝑖 ≤ 𝑐𝑖 for each element (𝜏𝑖 , 𝑡𝑖 , 𝑐𝑖 , 𝑑𝑖) ∈ 𝐴,
the last element can also only take at most max{|𝐶𝑖 |}𝑖 different
values. Similarly, the number of sets of the form 𝑅 is also finite.

Consequently, 𝑍 is a finite set. But then from the definition of ≈ it

follows that u ≈ v iff û = v̂. Thus {[u] | u ∈ H} is a finite set.
To show the second part, let u ≈ v with u = (𝑡, 𝐴, 𝑅) and v =

(𝑡 ′, 𝐴′, 𝑅′). We first wish to argue that 𝑋u = 𝑋v. Suppose 𝜏𝑖 ∈ 𝑋u.
Then there exists (𝜏𝑖 , 𝑡𝑖 , 𝑐𝑖 , 𝑑𝑖) ∈ 𝐴 or (𝜏𝑖 , 𝑡𝑖) ∈ 𝑅 such that 𝑡𝑖 +𝑇𝑖 =
𝑡 + 1. This in turn implies that there exists (𝜏𝑖 , 𝑡 ′𝑖 , 𝑐𝑖 , 𝑑𝑖) ∈ 𝐴′

or

(𝜏𝑖 , 𝑡 ′𝑖) ∈ 𝑅
′
such that 𝑡 ′ − 𝑡 ′

𝑖
= 𝑇𝑖 − 1 which in turn implies 𝜏𝑖 ∈ 𝑋v.

Thus𝑋u ⊆ 𝑋v. By a symmetric argument, we can establish𝑋v ⊆ 𝑋u.
Hence 𝑋u = 𝑋v.

Now suppose u
𝑝

−→
1

u′. Consider the case𝑋u = ∅. Then u
1−→
1

u′

with u′ being the unique successor of u. This follows from Prop. 2.1.

Since 𝑋v = ∅ there exists v′, the unique successor of v such that

v
1−→
1

v′. It remains to be shown that u′ ≈ v′. Let u′ = (𝑡 + 1, 𝐵,𝑊)
and v′ = (𝑡 ′ + 1, 𝐵′,𝑊 ′). Suppose (𝜏𝑖 , 𝑡𝑖 , 𝑐𝑖 , 𝑑𝑖) ∈ 𝐵. Then from

the proof of Prop. 2.1, it follows that there exists (𝜏𝑖 , 𝑡𝑖 , 𝑐𝑖 , 𝑑𝑖) ∈ 𝐴
with 𝑡𝑖 +𝑇𝑖 > 𝑡 + 1. Hence there exists (𝜏𝑖 , 𝑡 ′𝑖 , 𝑐𝑖 , 𝑑𝑖) ∈ 𝐴

′
such that

𝑡 ′
𝑖
+𝑇𝑖 > 𝑡 ′ + 1. This implies that (𝜏𝑖 , 𝑡 ′𝑖 , 𝑐𝑖 , 𝑑𝑖) ∈ 𝐵

′
by the definition

of v′. Clearly (𝑡 + 1) − 𝑡𝑖 = (𝑡 ′ + 1) − 𝑡 ′
𝑖
since 𝑡 − 𝑡𝑖 = 𝑡 ′ − 𝑡 ′𝑖 . In a

similar fashion we can show that (𝜏𝑖 , 𝑡 ′𝑖 , 𝑐
′
𝑖
, 𝑑′
𝑖
) ∈ 𝐵′ implies there

exists (𝜏𝑖 , 𝑡𝑖 , 𝑐′𝑖 , 𝑑
′
𝑖
) ∈ 𝐵 such that (𝑡 + 1) − 𝑡𝑖 = (𝑡 ′ + 1) − 𝑡 ′

𝑖
.

Now suppose (𝜏𝑖 , 𝑡𝑖) ∈ 𝑊 . Then there exists (𝜏𝑖 , 𝑡𝑖 , 𝑐𝑖 , 1) ∈ 𝐴

with 𝑠𝑡𝑖 = 1 or (𝜏𝑖 , 𝑡𝑖) ∈ 𝑅. In either case, using the fact that

u ≈ v, we can conclude that there exists (𝜏𝑖 , 𝑡 ′𝑖) ∈ 𝑊 ′
such that

(𝑡 + 1) − 𝑡𝑖 = (𝑡 ′ + 1) − 𝑡 ′
𝑖
. By a symmetric argument we can also

establish that if (𝜏𝑖 , 𝑡 ′𝑖) ∈𝑊
′
then there exists (𝜏𝑖 , 𝑡𝑖) ∈𝑊 such that

(𝑡 = 1) − 𝑡𝑖 = (𝑡 ′ + 1) − 𝑡 ′
𝑖
.

Next assume that 𝑋u = {𝜏𝑖1 , 𝜏𝑖2 · · · , 𝜏𝑖𝑘 } = 𝑋v. Then using

Prop. 2.1 and the fact that 𝑋u = 𝑋v, it is a laborious but routine

exercise to apply the definitions and show that if u
𝑝

−→
1

u′, then

there exists v′ such that v
𝑝

−→
1

v′ with u′ ≈ v′. By a symmetric

argument, we can complete the proof. □

We now lift ≈ to 𝑆 . Let s, s′ ∈ 𝑆 . Then s ≡ s′ iff s(𝑙) ≈ s′ (𝑙) for
0 ≤ 𝑙 < Δ. As before, we let [s] denote the ≡-equivalence class
containing the state s. It will be convenient to lift Lemma 5 to the

setting of states.

Figure 2: s′ is reachable from s via [x′].

Lemma 6. (1) ≡ is of finite index. In other words {[s] | s ∈ 𝑆}
is a finite set.

(2) Suppose s ≡ s′ and s
𝑝

−→
Δ

x. Then there exists x′ such that

s′
𝑝

−→
Δ

x′ and x ≡ x′

Proof. The first part follows easily from the definition of ≡
and the first part of Lemma 5. To show the second part, assume

s(Δ−1) = u and x = v0v1 · · · vΔ−1. Since s
𝑝

−→
Δ

xwe have u
𝑝0−→
1

v0
where 𝑝0 = 𝑝𝑟 (v0). Assume s′ (Δ − 1) = u′. Then u ≈ u′ and hence

by lemma 5, there exists v′
0
such that u′

𝑝0−→
1

v′
0
which also implies

that 𝑝𝑟 (v′
0
) = 𝑝0. Furthermore, v0 ≈ v′

0
. Since x is a trace, v0

𝑝1−→
1

v1
where 𝑝1 = 𝑝𝑟 (v1). Since v0 ≈ v′

0
, again by Lemma 5, there exists v′

1

such that v′
0

𝑝1−→
1

v′
1
which also implies 𝑝𝑟 (v′

1
) = 𝑝1. Furthermore,

v1 ≈ v′
1
. Proceeding this way, we can show that for 2 ≤ 𝑙 ≤ Δ − 1

there exist v′
𝑙
that v𝑙 ≈ v′

𝑙
, and 𝑝𝑟 (v′

𝑙
) = 𝑝𝑙 . Let x′ = v′

0
v′
1
· · · v′Δ−1.

Then it is easy to see that s′
𝑝

−→
Δ

x′. Moreover, x ≡ x′. □

We are now ready to define the required Markov chain.

Definition 5. 𝑀 = (𝑆, 𝑆𝑖𝑛, 𝑃) where:
(1) 𝑆 = {[s] | s ∈ 𝑆}.
(2) 𝑆𝑖𝑛 = {[s] | s(0) ∈ H𝑖𝑛}
(3) 𝑃 ([s], [s′]) = 𝑝 if there exists x ∈ [s] and x′ ∈ [s′] such that

x
𝑝

−→
Δ

x′. Otherwise 𝑃 ([s], [s′]) = 0

Due to Lemma 6, the probabilistic transition function 𝑃 is well-

defined.

Theorem 7. 𝑀 is a finite-state irreducible Markov chain.

Proof. From the first part of Lemma 5 it follows easily that 𝑆 is

a finite set of states.

Next, for [x] ∈ 𝑆 , define 𝑠𝑢𝑐𝑐 ([x]) = {[x′] | 𝑃 ([x], [x′]) > 0}.
Now consider [s] ∈ 𝑆 . From the definition of ≡ and the second

part of Lemma 6, it follows that there exists x ∈ [s] such that

x
𝑝

−→
Δ

x′ iff x′ ∈ 𝑠𝑢𝑐𝑐 ([s]). From Lemma 2, it now follows that∑
[s′]∈𝑠𝑢𝑐𝑐 ([s]) 𝑃 ([s], [s′]) = 1. Hence𝑀 is a Markov chain.

What remains is to show that𝑀 is irreducible. The overall struc-

ture of the argument used to establish irreducibility is shown in

Fig. 2. The details are as follows.

Let s ∈ 𝑆 . Then by the construction of𝑀 , there exists [x] ∈ 𝑆𝑖𝑛
and a sequence of states s0, s1, · · · , s𝑚 such that [x] = s0, s𝑚 = s,
and 𝑃 (s𝑙 , s𝑙+1) > 0 for 0 ≤ 𝑙 < 𝑚. In this sense s is reachable from
some [x] ∈ 𝑆𝑖𝑛 in𝑀 .

Analysis of Long-Term Average Behaviors of Probabilistic Task Systems RTNS 2024, November 06–08, 2024, Porto, Portugal

Now let s′ ∈ 𝑆 . By the above reasoning, there exists [x′] ∈ 𝑆𝑖𝑛
such that s′ is reachable from [x′] in𝑀 . The irreducibility property

will follow if we show that [x′] is reachable from s in𝑀 .

Let 𝐻𝑃 =
∏
𝑖 𝑇𝑖 be the hyperperiod of the task system. Let

[z] ∈ 𝑆𝑖𝑛 and 𝜌 = z0z1 · · · z𝐻𝑃 be a path of length 𝐻𝑃 in 𝑀 with

z0 = z. Since [z] ∈ 𝑆𝑖𝑛 , we must have z(0) ∈ H𝑖𝑛 and hence will be

of the form (0, 𝐴0, ∅) with 𝐴0 = {(𝜏𝑖 , 0, 𝑐𝑖 , 𝑐𝑖)}𝑖 where 𝑐𝑖 ∈ 𝐶𝑖 for
each 𝑖 . Since each state of𝑀 represents a trace of length Δ, we will
have, along the path 𝜌 , if z𝑗 (0) = (𝑡 𝑗 , 𝐴 𝑗 , 𝑅 𝑗) then 𝑡 𝑗 = 𝑗 ·Δ. From the

definition of 𝐻𝑃 , it now follows that if z𝐻𝑃 (0) = (𝑡𝐻𝑃 , 𝐴𝐻𝑃 , 𝑅𝐻𝑃)
then 𝑡𝐻𝑃 = 𝐻𝑃 · Δ and hence will be an integer multiple of 𝑇𝑖 for

each 𝑖 . This implies that for every task, a new instance of a job

belonging to the task will be released at 𝑡𝐻𝑃 . Furthermore, we have

𝑅𝐻𝑃 = ∅ and 𝐴𝐻𝑃 = {(𝜏𝑖 , 𝑡𝐻𝑃 , 𝑐𝑖 , 𝑐𝑖 }𝑖 with 𝑐𝑖 ∈ 𝐶𝑖 for each 𝑖 . This
in turn implies that [z𝐻𝑃] ∈ 𝑆𝑖𝑛 by the definitions of 𝑆 and 𝑆𝑖𝑛 .

Returning to s, let 𝐾 be the least positive integer such that𝑚 <

𝐾 · 𝐻𝑃 where𝑚 is the length of the path from [x] to s in𝑀 . Then

𝑘 = 𝐾 · 𝐻𝑃 −𝑚 > 0. Since 𝑀 is a Markov chain, each state will

have at least one successor state and hence, starting from s0 = s
we can construct a path s0s1 · · · s𝑘−1s𝑘 of length 𝑘 in𝑀 . But then

𝑚 + 𝑘 = 𝐾 · 𝐻𝑃 and hence by the reasoning above, we will have

s𝑘 ∈ 𝑆𝑖𝑛 . By the definitions of the transition relation of 𝑀 and

𝑆𝑖𝑛 , each state in 𝑆𝑖𝑛 will be a successor state of s𝑘−1 in𝑀 . Hence

s0s1 · · · s𝑘−1 [x′] will also a path in𝑀 . Thus [x′] is reachable from
s in𝑀 and the irreducibility of𝑀 follows. □

4.3 𝑀 represents 𝐵S
We wish to argue here that 𝑀 represents 𝐵S . In fact, it will be

more convenient to show this for𝑀 . Due to lemma 6, we can con-

clude then that this holds for 𝑀 as well. The basic idea is that

there is a 1 − 1 correspondence between the set of infinite paths

in 𝑀 that start from an initial configuration and the set of infi-

nite execution sequences. To this end, let u0u1 · · · be an infinite

execution sequence with u0 ∈ H𝑖𝑛 and u𝑙 −→ u𝑙+1 for every

𝑙 ≥ 0. This implies u𝑙
𝑝𝑙−→
1

u𝑙+1 with 𝑝𝑙 ∈ (0, 1] for every 𝑙 ≥ 0.

Let s𝑙 = u𝑙u𝑙+1 · · · u𝑙+Δ−1 for 𝑙 ≥ 0. Then it follows easily that

s𝑙 ·Δ
𝑝′
𝑙−→
Δ

s(𝑙+1) ·Δ with 𝑝′
𝑙
∈ (0, 1] From the definition of𝑀 we can

conclude that s0sΔs2Δ · · · is an infinite path in𝑀 that starts from

the initial state s0. We let 𝐸𝑃 be the map that assigns in this way

an infinite path 𝜎 of𝑀 to an infinite execution sequence of 𝜌 of S.
Next let 𝜎 = [s0] [s1] · · · be an infinite path in 𝑀 with s0 an

initial state and 𝑃 (s𝑙 , s𝑙+1) = 𝑝𝑙 > 0 for every 𝑙 ≥ 0. From the

definitions of the probabilistic transition relations, it follows that

s0s1 · · · is an infinite execution sequence of S. We let 𝑃𝐸 be the

map that assigns in this way an infinite execution sequence 𝜌 of

S to an infinite path 𝜎 of 𝑀 . It is straightforward to prove that

𝐸𝑃 (𝑃𝐸 (𝜎)) = 𝜎 for every infinite path 𝜎 of𝑀 and 𝑃𝐸 (𝐸𝑃 (𝜌)) = 𝜌
for every infinite execution sequence 𝜌 of S.

In this sense,𝑀 and therefore𝑀 represent 𝐵S . Consequently, the
stationary distribution of𝑀 captures long-term average properties

of S. Thanks to the ergodic theorem and the equivalence relation

≡, we can start from any initial state of𝑀 and sample long enough

paths to estimate the desired long-term average. For instance, let

𝑑𝑙𝑚𝑖 : 𝑆 → N0 be given by𝑑𝑙𝑚𝑖 (s) is the number of deadlinemisses

Figure 3:𝑀3 is induced by𝑀 .
of jobs belonging to 𝜏𝑖 in the trace represented by s. Then we can

estimate the expected value of this quantity through sampling.

4.4 Weakly-hard constraints
Finally, we consider the estimation of the long-term averages of

weakly-hard constraints. To be sure, we can sample paths from

𝑀 and carry forward a bounded amount of information during

sampling to estimate averages of weakly-hard constraint violations.

However, to establish the statistical validity of such estimates, we

must ensure that these averages converge and in the limit they will

correspond to the expected numbers of violations defined by the

steady state distribution of an irreducible Markov chain. In this

case, such sampling-based average estimates can be justified by

appealing to the ergodic theorem,

A complication with weakly-hard constraints is that, unlike dead-

line misses, we can not define a random variable over a single state
(unit interval) to capture violations since the interval associated

with a constraint may straddle two consecutive unit intervals. For

instance, with Δ = 5 and (2, 4) as a weakly-hard constraint, the

intervals [2, 6), [3, 7) and [4, 8) will straddle the unit intervals [0, 5)
and [5, 10). Hence a random variable defined over the states of𝑀

(defined in definition.5) will not be able to count the constraint vio-

lations occurring during these “straddling” intervals. Consequently,

the expected number of violations of the constraint (2, 4) predicted
by the stationary distribution of𝑀 will not be accurate.

We shall present here our technique for getting around this in a

simple setting where the specification consists of a single weakly-

hard constraint (𝑚𝑖 , 𝑘𝑖) for each task 𝜏𝑖 . We then fix 𝑙 to be the

least integer such that max{𝑘𝑖 }𝑖 ≤ 𝑙 and define the Markov chain

𝑀𝑙 . The states of this chain will be finite paths of length 𝑙 − 1 of𝑀 .

Further, the transition function of𝑀𝑙 will ensure the following: (i)

𝑀𝑙 is an irreducible Markov chain, (ii) we can define, for each 𝑖 , a

random variable 𝑤ℎ𝑖 over the states of 𝑀𝑙 such that, E(𝑤ℎ𝑖), the
expected number violations of the constraint (𝑚𝑖 , 𝑘𝑖) defined by

the steady state distribution of 𝑀𝑙 indeed captures the long term

averages of violations of the constraint (𝑚𝑖 , 𝑘𝑖) for each 𝑖 , and (iii)

the estimates of these averages obtained by sampling from 𝑀 as

sketched above, will converge in the limit to E(𝑤ℎ𝑖) for each 𝑖 .
To bring out the main ideas in a sufficiently general setting

while minimizing the notational overhead, we shall assume here

that 𝑘𝑖 ≤ 3 · Δ for each constraint (𝑚𝑖 , 𝑘𝑖). We then define the

Markov chain𝑀3 as follows.

Definition 6. Let𝑀 = (𝑆, 𝑆𝑖𝑛, 𝑃) be as defined in subsection 4.2.
Then𝑀3 = (𝑆3, 𝑆𝑖𝑛

3
, 𝑃3) where:

• 𝑆3 ⊆ 𝑆 × 𝑆 × 𝑆 is given by:
(𝑠1, 𝑠2, 𝑠3) ∈ 𝑆3 iff 𝑃 (𝑠 𝑗 , 𝑠 𝑗+1) > 0 for 1 ≤ 𝑗 < 3.

• 𝑆𝑖𝑛
3

⊆ 𝑆3 is given by:
(𝑠1, 𝑠2, 𝑠3) ∈ 𝑆𝑖𝑛

3
iff 𝑠1 ∈ 𝑆𝑖𝑛 .

RTNS 2024, November 06–08, 2024, Porto, Portugal Yifan Cai, Linh Thi Xuan Phan, and P.S. Thiagarajan

• For (𝑠1, 𝑠2, 𝑠3), (𝑠′
1
, 𝑠′
2
, 𝑠′
3
) ∈ 𝑆3:

𝑃3 ((𝑠1, 𝑠2, 𝑠3), (𝑠′
1
, 𝑠′
2
, 𝑠′
3
)) = 𝑃 (𝑠3, 𝑠′

3
) if (𝑠2, 𝑠3) = (𝑠′

1
, 𝑠′
2
). Oth-

erwise, 𝑃3 ((𝑠1, 𝑠2, 𝑠3), (𝑠′
1
, 𝑠′
2
, 𝑠′
3
)) = 0.

The idea underlying this construction is illustrated in Fig. 3.

The arguments developed for showing Theorem 7, can be easily

extended to show the next result. We omit the details due to space

limitations.

Theorem 8. 𝑀3 is a finite-state irreducible Markov chain.

We can now define the random variable 𝑤ℎ𝑖 : 𝑆3 →
N0 via: 𝑤ℎ𝑖 ((𝑠1, 𝑠2, 𝑠3)) = 𝑘 iff there are 𝑘 violations of

the constraint (𝑚𝑖 , 𝑘𝑖) in the trace 𝑠1𝑠2𝑠3. Now suppose 𝜌 =

(𝑠0
1
, 𝑠0
2
, 𝑠0
3
), (𝑠1

1
, 𝑠1
2
, 𝑠1
3
) · · · (𝑠 𝑗

1
, 𝑠
𝑗

2
, 𝑠
𝑗

3
) · · · is an infinite path in 𝑀3.

Then (𝑠 𝑗
1
, 𝑠
𝑗

2
, 𝑠
𝑗

3
) will cover the behavior during [𝑗 ·Δ, (𝑗+3)·Δ) while

(𝑠 𝑗+1
1

, 𝑠
𝑗+1
2

, 𝑠
𝑗+1
3

) will cover the behavior during [(𝑗+1) ·Δ, (𝑗+4) ·Δ).
This is due to the fact that (𝑠 𝑗

2
, 𝑠
𝑗

3
) = (𝑠 𝑗+1

1
, 𝑠
𝑗+1
2

) by the definition of

𝑀3. Thus𝑤ℎ𝑖 will count all the violations of the (𝑚𝑖 , 𝑘𝑖) constraint
that occur along 𝜌 and E(𝑤ℎ𝑖) defined by the steady state distribu-

tion of𝑀3 will be the long-term average of the number of violations

of this constraint. Furthermore, due to the ergodic theorem and the

definition of𝑀3, this boils down to sampling sufficiently long paths

from𝑀 augmented with some bounded bookkeeping. In this sense,

𝑀3 provides the mathematical basis for estimating the weakly-hard

constraint violations through a simple sampling procedure.

The definition of 𝑀3 can be smoothly extended to 𝑀𝑙 for any

𝑙 ≥ 1. Then given a set of constraints {(𝑚𝑖 , 𝑘𝑖)}𝑖 , we can choose an

𝑙 that satisfiesmax({𝑘𝑖 }) ≤ 𝑙 ·Δ and define𝑀𝑙 . This will secure the

mathematical basis for estimating the long-term averages of the

violations of these constraints by sampling paths from𝑀 . Due to

lack of space, we do not present the details here. Finally, our method

can be easily extended to handle a rich language of constraints

described in [34].

5 Evaluation
To evaluate the performance and practical utility of our method,

we conducted a series of experiments using synthetic workloads

(Sec. 5.1–5.4) and a real-world rover control system (Sec. 5.5).

Setup. We implemented our Markov chain-based ground truth

computation (by explicitly computing the stationary distribution)

and the sampling method for computing the long-term average

deadline miss and weakly-hard constraint violations. We used the

weakly-hard constraint with (𝑚,𝑘) = (3, 4) by default, unless speci-
fied otherwise. We implemented both the static-priority policy and

the EDF policy (as a representative dynamic scheduling policy).

Our implementation was in Python. Experiments were performed

on a machine with Intel(R) Xeon(R) Silver 4216 CPUs @ 2.10GHz

and 64GB memory. The implementation is available on GitHub

(https://github.com/fyc1007261/analysis-LTA).

Workload.We randomly generated periodic task sets of different

sizes and utilizations. For each task set with size 𝑛 and utilization

𝑢, we used the Dirichlet-Rescale algorithm [16, 17] to generate 𝑛

average utilization values 𝑢1, 𝑢2, · · · , 𝑢𝑛 for the 𝑛 tasks in the set,

such that

∑𝑛
𝑖=1 𝑢𝑖 = 𝑢. The expectation of the execution time 𝜇𝑒 of

a task was set to be the product of its period and average utilization.

A task’s deadline was set equal to its period. The task set utilization

Tasks 5 6 7 8 9 10
EDF 0.51 4.19 27.12 150.52 2124.34 8222.69

Static 0.50 4.52 24.42 127.17 1888.02 6797.99

Table 1: Median time (seconds) of ground-truth computation.
varied between 0.85 and 1.05, at steps of 0.05. For each combination

of task set size and utilization, we generated 50 different task sets.

In total, we tested 8 · 5 · 50 = 2000 task sets.

5.1 Ground truth computation
To establish a reference for evaluating the accuracy of our sampling

method, we computed the ground-truth stationary distribution of

our Markov chains by using the scipy [29] package to compute

eigenvectors and eigenvalues. To keep the running times of ground

truth computations manageable, the task periods were randomly

chosen from {3, 4, 6, 12}. For each task with expected execution

time 𝜇𝑒 , we fixed the distribution of its computation times to be

0.8𝜇𝑒 with probability 0.5 and 1.2𝜇𝑒 with probability 0.5.

Results. Table. 1 shows the median time for computing the ground-

truth weakly-hard constraint violations. As expected, computing

the ground truth is feasible only for small systems; for larger sys-

tems, sampling is a much more efficient alternative.

5.2 Sampling methodology
When sampling a path in a Markov chain, we need to know when

it is safe to stop. To determine this, we used the diagnostic method

proposed by Gelman and Rubin [15] to detect convergence. This

method computes a value, referred to as “Rhat (𝑅) score”, which

measures convergence by comparing the variance between mul-

tiple chains to the variance within each chain. An 𝑅 score close

to 1 indicates that the execution sequences sampled are close to

convergence, whereas a score much larger than 1 means that more

sampling steps are needed.We used the arviz library [23] in Python
with the recommended rank method [32] to compute 𝑅 scores. Be-

sides 𝑅, we also introduced a parameter 𝑇𝑠𝑡𝑎𝑏 : only if the 𝑅 scores

of all tasks stabilized below a threshold for a sufficiently long time

duration 𝑇𝑠𝑡𝑎𝑏 , we declared convergence and stopped sampling.

To determine 𝑇𝑠𝑡𝑎𝑏 and proper thresholds for 𝑅, we performed

experiments on the same task sets used in Sec. 5.1. For all task sets,

we sampled four execution sequences (the execution sequences 0–3

in Fig. 4b), measured their violation rates, and computed the 𝑅 score

with respect to the number of jobs sampled.

Results. Fig. 4a shows the maximum and mean 𝑅 scores across all

tasks in all task sets. We observe that all tasks reach a stable state

where 𝑅 < 1.0002. Fig. 4b and 4c show the sampling results and the

𝑅 scores during the sampling of a specific task. The violation rates

for the execution sequences become stable after around 15000 jobs

(Fig. 4b), while the 𝑅 score stabilizes when 10000 jobs are sampled

(Fig. 4c). Results for other task sets show a similar relationship, with

an approximately 5000 jobs difference, between the convergence of

results and 𝑅 score. Therefore, we chose 𝑅 = 1.0002 as the threshold

and 𝑇𝑠𝑡𝑎𝑏 = 5000 jobs as the stabilization time.

5.3 Accuracy of the sampling method
We ran the same task sets as in Sec. 5.1 with two distributions of

job execution times, using the sampling method discussed above.

Besides the distribution described in Sec. 5.1, we also considered a

“likely-unlikely” distribution: the job execution time is “likely” to be

https://github.com/fyc1007261/analysis-LTA

Analysis of Long-Term Average Behaviors of Probabilistic Task Systems RTNS 2024, November 06–08, 2024, Porto, Portugal

0 10000 20000 30000 40000 50000
Number of jobs sampled

1.000

1.002

1.004

R̂
Sc

or
e

(a) R̂ vs Num of Jobs Sampled
max(R̂) among all tasks
mean(R̂) among all tasks
R̂= 1.0002 as a threshold

0 10000 20000 30000 40000 50000
Number of jobs sampled

0.0

0.1

0.2

0.3

Vi
ol

at
io

n
Ra

te

(b) Single-Task Sampling Results
Execution Sequence 0
Execution Sequence 1
Execution Sequence 2
Execution Sequence 3

0 10000 20000 30000 40000 50000
Number of jobs sampled

1.000

1.002

1.004

1.006

R̂
Sc

or
e

(c) The Single-task R̂ Score
R̂ of the four sequences
R̂= 1.0002 as a threshold

Figure 4: (a) Max and mean 𝑅 scores across all tasks in all task sets during sampling. (b) Weakly-hard constraint violation rate
of each execution sequence for a specific task. (c) 𝑅 score of the four execution sequences in the middle subfigure.

Job execution time Uniform distribution Likely-unlikely distribution
Difference Mean value (%) Median value (%) 99th perc. value (%) Mean value (%) Median value (%) 99th perc. value (%)
Δ Values 4 8 12 4 8 12 4 8 12 4 8 12 4 8 12 4 8 12

Deadline
Miss Ratio

EDF 0.031 0.031 0.031 0.000 0.000 0.000 0.411 0.412 0.406 0.043 0.044 0.043 0.023 0.023 0.023 0.290 0.295 0.287

Static 0.032 0.033 0.032 0.000 0.000 0.000 0.365 0.367 0.351 0.038 0.040 0.038 0.022 0.023 0.021 0.231 0.234 0.236

Weakly-hard
Constraints

EDF 0.026 0.027 0.027 0.000 0.000 0.000 0.458 0.439 0.481 0.023 0.023 0.023 0.006 0.006 0.006 0.242 0.243 0.240

Static 0.039 0.039 0.038 0.000 0.000 0.000 0.518 0.497 0.491 0.025 0.025 0.025 0.004 0.004 0.004 0.233 0.245 0.240

Table 2: Accuracy (by absolute difference) of sampling with job execution time in uniform and likely-unlikely distributions.

95

99
𝜇𝑒 with probability 0.99, and “unlikely” to be 5𝜇𝑒 with probability

0.01. For each task set, we computed the absolute difference between

the sampling results and the ground truth (Sec. 5.1). We repeated

the experiments for different Δ values.

Results. Table 2 shows the sampling accuracy under each of the

considered settings. We can make four observations: First, the mean

difference is very small, between 0.023% and 0.044% across all eval-

uated cases, indicating that the sampling method has very high

accuracy in general. Further, for the vast majority (99%) of the tasks,

the difference between sampling and ground truth results is within

0.518%. Third, under the uniform distribution, the median difference

is zero across all settings, which indicates that more than half of the

sampling results are the same as the ground truth. Upon a closer

examination, we find that many tasks in the system never miss

the deadline or violate the weakly-hard constraints. Our sampling

method catches this behavior for all of these tasks, hence return-

ing the same estimates as the ground truth. Finally, the results are

similar across the different settings of Δ, which suggests that the

exact value of Δ has minimal influence on the accuracy. Overall,

the results confirm that our sampling method is highly accurate.

5.4 Performance and scalability of sampling
For scalability evaluation, we focused on the four most determinant

factors of the Markov chain size: the length of the unit interval Δ,
the task set size, the length of task periods, and the number of job

execution times. We considered much larger task systems than the

ones in earlier experiments. When generating a task set, we first

chose an upper bound value for task periods 𝑇max

𝑖
(referred to as

maximum period value) and then randomly selected integers in

[1,𝑇max

𝑖
] as task periods. We performed experiments for a wide

range of values for the above four factors, and considered 20 task

sets per each combination of values. The results are consistent

across these combinations; due to space constraints, we present

only the results for variants of the following default values, unless

explicitly stated otherwise:𝑇max

𝑖
= 16; Δ = 𝑇max

𝑖
; task set size is 50;

and job execution times are in the range of [0.8𝜇, 1.2𝜇], with 10

possible execution times which represent a discrete approximation

of the Gaussian distribution 𝜇 = 𝜇𝑒 and 𝜎 = 0.2𝜇𝑒 . Specifically, we

computed the integral of the probability density function of the

Gaussian distribution in each of the 10 slots, and then computed

the probability of each of the 10 values based on the integral.

Impact of Δ.We first evaluated the impact of the unit of time Δ
on convergence time. We repeated the experiments for different

values of Δ, ranging from 1 to 720720 (the hyperperiod), while

keeping the default values for other factors. When we tried to draw

samples with Δ being the hyperperiod, convergence of some of the

task sets was not achieved even after 40 hours; this confirmed a

hyperperiod-based analysis is not scalable.

Fig. 5a and Fig. 5b show the convergence time for different Δ
settings. We observe that the convergence time is much higher

when Δ is either too small or too large, under both scheduling

policies. For example, under the static priority policy, the median

convergence time is 293.96 s when Δ = 5, 55.65 s when Δ = 500,

and 3163.34 s when Δ = 100000. For smaller Δ values, it is often

the case that within a Δ-interval, no job is issued or finished, and

therefore no useful data is sampled. For large Δ values, even one

Δ-interval may be longer than needed for the sampling to converge.

Hence our approach allows the user to flexibly choose a value

of Δ to improve the sampling performance, instead of fixing the

interval at the two extremes of the hyperperiod or the microtick (𝛾).

Impact of task set size. We next varied the task set size to be

in {5, 10, 25, 50, 100, 200, 300, 400, 500, 1000} while keeping the

default values for other factors. Fig. 5c and Fig. 5d show the box

plots of the convergence time for all task sets grouped by the

task set size under EDF and static priority. We observe that the

convergence time grows slightly faster than linear but slower than

quadratic, and that it is efficient for typical real-time systems. For

example, at 50 tasks per set, the median sampling time is less than

45.39 seconds under EDF and 59.82 seconds under static priority

policy. At the extreme, for task sets with 1000 tasks, the median

time to convergence is 19.53 minutes under EDF, and 32.90 minutes

RTNS 2024, November 06–08, 2024, Porto, Portugal Yifan Cai, Linh Thi Xuan Phan, and P.S. Thiagarajan

1 5
10

0
50

0
10

00
50

00
10

00
0

50
00

0
10

00
00

72
07

20
Length of the Unit Time Δ

103

105

Co
nv

er
ge

nc
e

tim
e

(s
) (a) Varying Unit Time (EDF)

1 5
10

0
50

0
10

00
50

00
10

00
0

50
00

0
10

00
00

72
07

20

Length of the Unit Time Δ

103

105

(b) Varying Unit Time (Static)

5 10 25 50 10
0

20
0

30
0

40
0

50
0

10
00

Number of tasks

100

102

104

(c) Varying Num of Tasks (EDF)

5 10 25 50 10
0

20
0

30
0

40
0

50
0

10
00

Number of tasks

100

102

104

(d) Varying Num of Tasks (Static)

Figure 5: Convergence time of sampling, grouped by unit interval Δ value (a+b) and by the size of the task sets (c+d).

8 16 32 64 12
8

25
6

Max Period Among Tasks

101

102

103

Co
nv

er
ge

nc
e

tim
e

(s
) (a) Varying Max Period (EDF)

8 16 32 64 12
8

25
6

Max Period Among Tasks

101

102

103

(b) Varying Max Period (Static)

5 10 25 50 10
0

20
0

50
0

10
00

20
00

50
00

Num of Possible Job Exec Times

102

103

(c) Vary Num of Exec Times (EDF)

5 10 25 50 10
0

20
0

50
0

10
00

20
00

50
00

Num of Possible Job Exec Times

102

103

(d) Vary Num of Exec Times (Static)

Figure 6: Convergence time, grouped by the maximum length of periods (a+b) and the number of job execution times (c+d).

under the static-priority policy, which is acceptable for offline

analysis. In short, our sampling method is efficient for common

task set sizes, and it can scale to very large numbers of tasks.

Impact of task periods. We considered a range of maximum
period values 𝑇max

𝑖
, chosen randomly in {8, 16, 32, 64, 128, 256},

and set Δ = 128. For each 𝑇max

𝑖
, we generated the tasks’ periods

as integers randomly chosen in the range [1,𝑇max

𝑖
]. Fig. 6a and

Fig. 6b show the box plots of the convergence time grouped by

the longest period for the two scheduling policies. We observe

that the convergence time increases as the longest period value

increases, but at a slow pace. For instance, increasing the longest

period from 8 to 256 (by 32×) leads to around a 5× increase in the

mean, median, and maximum analysis time.

Impact of the number of job execution times. This evaluation
assesses the efficiency of sampling as we scaled the number of

possible job execution times. With the minimum and maximum

execution time still being 0.8𝜇𝑒 and 1.2𝜇𝑒 , respectively, we divided

this range into different numbers (instead of the default number 10)

of discrete values, which we refer to as the number of possible job
execution times.We tested the convergence time of our sampling

method with the number of possible job execution times in the set

of {5, 10, 25, 50, 100, 200, 500, 1000, 2000, 5000}.
Fig. 6c and Fig. 6d show the convergence time grouped by the

number of possible job execution times (|𝐶𝑖 |). We observe that as

the number of possible job execution times increases, the conver-

gence time does not change much; this means that our analysis

scales with the number of values within the job execution time

distribution. On a closer examination, we observed that the time

taken for picking a job execution time from any distribution during

our sampling procedure is insignificant, which explains why the

number of possible job execution times has little impact on the anal-

ysis time. Thus, by setting a high number of possible job execution

times, the discrete job execution time distribution used for sam-

pling can more closely match the actual distribution of execution

time, thus improving the accuracy of sampling for real workloads

without bringing much overhead to the sampling efficiency.

5.5 Case study: rover control system
To demonstrate the practical utility of our technique, we conducted

a case study of a rover control system, ArduPilot [2], an open-

source autopilot software system for real-time control of unmanned

vehicles. ArduPilot has been usedwidely in practice, e.g., by NASA,
Intel, Boeing, and in research [1, 4, 5].

Workload and setup. The rover control system contains 45 con-

trol tasks (including GPS signal processing, RPM adjustment, etc.)

with periods between 2500𝜇𝑠 and 10
7𝜇𝑠 . To keep in line with our

proposed approach, we modified the scheduler and employed the

policy that a job will be killed once it misses the deadline. For the

rest, we kept ArduPilot’s static-priority and non-preemptive pol-

icy. We used SITL (software in the loop) of ArduPilot to simulate

the environments, sensors, and actuators. The periods (deadlines)

and priority values were extracted from ArduPilot documentation

and source code. All tasks were implemented in C++. We ran the

tasks on a single core on a Raspberry Pi 3A+, a common platform

for the deployment of ground vehicles.

Execution time profiling. The execution time of a job depends

on many factors including the input(s), the current environment,

and the recent history of the micro-architectural components. It

is difficult to create an accurate model to capture all these factors.

Instead, we measured the computation times of the jobs released by

a task along a long execution sequence, discretized these times into

10k bins, and extracted a distribution from the resulting histogram.

Our working hypothesis was that this distribution is a reasonable

approximation from which one can sample the execution times of

the jobs belonging to a task.

Accordingly, we ran the entire system with all tasks together

on our experimental platform. During the execution, each task

released from 120k to 4.8M jobs, depending on its period. The

inputs of the tasks varied, reflecting the current state of the real

Analysis of Long-Term Average Behaviors of Probabilistic Task Systems RTNS 2024, November 06–08, 2024, Porto, Portugal

Deadline Miss Ratio (m, k) = (3, 4) (m, k) = (4, 5) (m, k) = (8, 10)
Observed Predicted Observed Predicted Observed Predicted Observed Predicted

AHRS Update 0.035% 0.035% 0.006% 0.005% 0.007% 0.006% 0.008% 0.009%

GCS Update Recv 0.055% 0.052% 0.007% 0.006% 0.009% 0.007% 0.009% 0.010%

GCS Update Send 0.057% 0.055% 0.007% 0.006% 0.008% 0.007% 0.009% 0.010%

Gyro FFT Sample 0.005% 0.005% 0.006% 0.005% 0.006% 0.005% 0.009% 0.010%

Gyro FFT Update 0.058% 0.059% 0.008% 0.007% 0.009% 0.009% 0.009% 0.010%

Inertial Sensing 0.058% 0.058% 0.008% 0.007% 0.009% 0.009% 0.009% 0.010%

Set Servos 0.039% 0.040% 0.006% 0.005% 0.007% 0.006% 0.008% 0.009%

Update Mode 0.038% 0.037% 0.006% 0.005% 0.007% 0.006% 0.008% 0.009%

Update Precland 0.057% 0.056% 0.007% 0.007% 0.008% 0.008% 0.009% 0.010%

Table 3: The observed and predicted violation rate comparison in the rover control system.

system. We collected the execution time of each job for our analysis.

The measured job execution times of each task formed a (discrete)

distribution of its execution time, which we then used as input to

our sampling method. Overall, the total system utilizations based

on the mean, median, 99.9-th percentile, and 99.99-th percentile

execution times of the tasks are 0.15, 0.14, 0.75 and 6.40, respectively.

Predicted results vs. observed results. We applied our sampling

method to compute the long-term average weakly-hard constraint

violation rates using the profiled execution time distributions as

inputs, following the same methodology as in Section 5.2. Further,

to evaluate how close our prediction is to the violation rates from

actual executions, we executed the rover control system on our

experimental platform for 5 runs, 1 hour per run (1.44M jobs for

the task with the smallest period), and logged the deadline hits and

misses for each task. We then computed the average violation rates

for different weakly-hard constraints. Table 3 shows the results

computed by our analysis (“predicted”) and measured from actual

runs (“observed”). (Tasks with both rates below 0.005% are not

shown). The results show that the violation rates predicted by our

method are very close to the ones observed in real executions. The

absolute difference is ≤ 0.003% and ≤ 0.002%. This confirms that our

analysis can be highly accurate when applied to a real-world system,

even when using an approximate execution time distribution.

6 Related Work
There is a rich body of work on probabilistic task systems. The

survey [10] provides a broad and detailed account. Here, we focus

on research that is closely in line with our work. Accordingly, an

often studied property is Deadline Miss Probability (DMP), which is

informally stated in [10] as “a probability with a long-run frequency

interpretation equating to the expected number of missed deadlines

divided by the total number of deadlines in a long (tending to

infinite) time interval.” This is, however, often formalized in terms

of the ratio of the total number of deadline misses to the total

number of deadlines in a hyperperiod.
The early work on analyzing the DMP of periodic tasks byWood-

bury and Shin [36] is also based on hyperperiods termed in their

work as major cycles. In addition, most methods for computing

DMP and related properties [11, 12, 22, 25, 26] are not only based

on hyperperiods but also work with a matrix representation of

an associated Markov chain. In contrast, we use a sampling-based

approach that avoids the explicit construction of the Markov chain

which is computationally infeasible for all but small systems.

A relatedwork aimed at mitigating the effect of the independence

assumption while estimating long-term average properties is the

multimode Markov model investigated in [14] where each mode is

accompanied by a distribution. The analysis however is carried out

by first converting the model into an infinite-state Markov chain.

Then using an infinite transition matrix, the stationary distribution

is estimated using a numerical technique. Consequently, ourmethod

can be easily applied to this more general model without appealing

to an infinite transition matrix.

Moving a step away from our work, pWCET [13, 31], WCDFP [3,

33] and WCRTEP [8, 27] are properties that have been well studied.

However, they are essentially transient properties while we focus on
long-term averages arising from infinite executions of the system.

Recently, Bozhko et al. [7] proposed a Monte Carlo approach to

estimate tasks’ response times with much better performance than

static analysis (assuming some probability of mis-estimates). This

technique is applicable in our setting only when the hyperperiod is

chosen as the unit of time so that one can draw independent samples

without requiring state-dependent backlogs. However, drawing a

sufficient number of samples in this case will be often computation-

ally infeasible.

Weakly-hard constraints have often been studied in co-design

techniques, which exploit the ability to tolerate some violations

of such constraints to optimize resource usage [19, 24, 35]. Prob-

abilistic analysis for weakly-hard constraints has also been con-

sidered [20]. However, we are not aware of any existing work for

analyzing long-term average behaviors of probabilistic task systems

with weakly-hard constraints.

7 Conclusion and Future Work
We have introduced aMarkov chain-based framework for analyzing

the long-term average behaviors of probabilistic periodic real-time

systems. The novelty of our model is that, unlike previous work, it is

not confined to hyperperiods being the unit of time. Our evaluation

results have demonstrated that our sampling-based method scales

up to large task sets. In our future work, we plan to extend the

current theory to settings where the independence assumption

about task execution times can be relaxed. In addition, we plan to

extend our technique to multiprocessor and distributed systems. It

will also be interesting to combine our method with probabilistic

formal verification methods [21] to construct a unified framework

for analyzing both transient and long-term properties.

Acknowledgments
The authors would like to thank the anonymous reviewers for

their thorough and helpful reviews. This work was supported in

part by NSF grants CNS-1750158, CNS-1955670, CNS-2111688 and

CCF-2326606.

RTNS 2024, November 06–08, 2024, Porto, Portugal Yifan Cai, Linh Thi Xuan Phan, and P.S. Thiagarajan

References
[1] Azza Allouch, Omar Cheikhrouhou, Anis Koubâa, Mohamed Khalgui, and Tarek

Abbes. 2019. MAVSec: Securing the MAVLink protocol for ardupilot/PX4 un-

manned aerial systems. In Proc. International Wireless Communications & Mobile
Computing Conference (IWCMC ’19).

[2] ArduPilot. 2023. ArduPilot - versatile, trusted, open. https://ardupilot.org/.

[3] Philip Axer and Rolf Ernst. 2013. Stochastic response-time guarantee for non-

preemptive, fixed-priority scheduling under errors. In Proc. Annual Design Au-
tomation Conference (DAC ’13).

[4] Sabur Baidya, Zoheb Shaikh, and Marco Levorato. 2018. FlyNetSim: An open

source synchronized UAV network simulator based on ns-3 and ardupilot. In

Proc. International Conference on Modeling, Analysis and Simulation of Wireless
and Mobile Systems (MSWiM ’18).

[5] Simone Baldi, Danping Sun, Xin Xia, Guopeng Zhou, and Di Liu. 2022. ArduPilot-

based adaptive autopilot: architecture and software-in-the-loop experiments.

IEEE Trans. Aerospace Electron. Systems 58, 5 (2022), 4473–4485.
[6] Guillem Bernat, Alan Burns, and Albert Liamosi. 2001. Weakly hard real-time

systems. IEEE transactions on Computers 50, 4 (2001), 308–321.
[7] Sergey Bozhko, Georg von der Brüggen, and Björn Brandenburg. 2021. Monte

carlo response-time analysis. In Proc. IEEE Real-Time Systems Symposium (RTSS
’21).

[8] Kuan-Hsun Chen, Mario Günzel, Georg von der Brüggen, and Jian-Jia Chen. 2022.

Critical instant for probabilistic timing guarantees: Refuted and revisited. In Proc.
IEEE Real-Time Systems Symposium (RTSS ’22).

[9] Hoon Sung Chwa, Kang G. Shin, and Jinkyu Lee. 2018. Closing the Gap Between

Stability and Schedulability: A New Task Model for Cyber-Physical Systems.

In Proc. IEEE Real-Time and Embedded Technology and Applications Symposium
(RTAS ’18).

[10] Robert I. Davis and Liliana Cucu-Grosjean. 2019. A Survey of Probabilistic

Timing Analysis Techniques for Real-Time Systems. Leibniz Trans. Embed. Syst.
6, 1 (2019), 03:1–03:60.

[11] José Luis Díaz, Daniel F García, Kanghee Kim, Chang-Gun Lee, L Lo Bello,

José María López, Sang Lyul Min, and Orazio Mirabella. 2002. Stochastic analysis

of periodic real-time systems. In Proc. IEEE Real-Time Systems Symposium (RTSS
’02).

[12] Jose Luis Diaz, Jose Maria Lopez, Manuel Garcia, Antonio M Campos, Kanghee

Kim, and Lucia Lo Bello. 2004. Pessimism in the stochastic analysis of real-time

systems: Concept and applications. In Proc. IEEE Real-Time Systems Symposium
(RTSS ’04).

[13] Stewart Edgar and Alan Burns. 2001. Statistical analysis of WCET for scheduling.

In Proc. IEEE Real-Time Systems Symposium (RTSS ’01).
[14] Bernardo Villalba Frias, Luigi Palopoli, Luca Abeni, and Daniele Fontanelli. 2017.

Probabilistic real-time guarantees: There is life beyond the iid assumption. In Proc.
IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS
’17).

[15] Andrew Gelman and Donald B Rubin. 1992. Inference from iterative simulation

using multiple sequences. Statistical science (1992), 457–472.
[16] David Griffin, Iain Bate, and Robert I. Davis. 2020. dgdguk/drs. https://doi.org/

10.5281/zenodo.4118058

[17] David Griffin, Iain Bate, and Robert I Davis. 2020. Generating utilization vectors

for the systematic evaluation of schedulability tests. In Proc. IEEE Real-Time
Systems Symposium (RTSS ’20).

[18] Moncef Hamdaoui and Parameswaran Ramanathan. 1995. A dynamic priority

assignment technique for streams with (m, k)-firm deadlines. IEEE transactions
on Computers 44, 12 (1995), 1443–1451.

[19] Michael Hertneck, Steffen Linsenmayer, and Frank Allgöwer. 2021. Efficient

stability analysis approaches for nonlinear weakly-hard real-time control systems.

Automatica 133 (2021), 109868.
[20] Eun-Young Kang, Dongrui Mu, and Li Huang. 2018. Probabilistic verification of

timing constraints in automotive systems using UPPAAL-SMC. In Proc. Interna-
tional Conference of Integrated Formal Methods (IFM ’18).

[21] Joost-Pieter Katoen. 2016. The Probabilistic Model Checking Landscape. In Proc.
ACM/IEEE Symposium on Logic in Computer Science (LICS ’16).

[22] Kanghee Kim, Jose Luis Diaz, Lucia Lo Bello, José María López, Chang-Gun Lee,

and Sang Lyul Min. 2005. An exact stochastic analysis of priority-driven periodic

real-time systems and its approximations. IEEE Trans. Comput. 54, 11 (2005),

1460–1466.

[23] Ravin Kumar, Colin Carroll, Ari Hartikainen, and Osvaldo Antonio Martín. 2019.

ArviZ a unified library for exploratory analysis of Bayesian models in Python.

Journal of Open Source Software (2019).
[24] Ching-Chi Lin, Mario Günzel, Junjie Shi, Tristan Taylan Seidl, Kuan-Hsun Chen,

and Jian-Jia Chen. 2023. Average task execution time minimization under (m,

k) soft error constraint. In Proc. IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS ’23).

[25] José María López, José Luis Díaz, Joaquín Entrialgo, and Daniel García. 2008.

Stochastic analysis of real-time systems under preemptive priority-driven sched-

uling. Real-Time Systems 40, 2 (2008), 180–207.

[26] Dorin Maxim, Olivier Buffet, Luca Santinelli, Liliana Cucu-Grosjean, and Robert I

Davis. 2011. Optimal Priority Assignment Algorithms for Probabilistic Real-Time

Systems. In Proc. International Conference on Real-Time and Network Systems
(RTNS ’11).

[27] Dorin Maxim and Liliana Cucu-Grosjean. 2013. Response time analysis for fixed-

priority tasks with multiple probabilistic parameters. In Proc. IEEE Real-Time
Systems Symposium (RTSS ’13).

[28] JR Norris. 1998. Markov Chains. Vol. 2. Cambridge University Press.

[29] SciPy. 2024. SciPy: Fundamental algorithms for scientific computing in Python.

https://scipy.org/.

[30] Damoon Soudbakhsh, Linh T. X. Phan, Anuradha Annaswamy, Oleg Sokolsky,

and Insup Lee. 2013. Co-design of Control and Platform with Dropped Signals.

In Proc. International Conference on Cyber-Physical Systems (ICCPS ’13).
[31] T-S Tia, Zhong Deng, Mallikarjun Shankar, Matthew Storch, Jun Sun, L-C Wu,

and JW-S Liu. 1995. Probabilistic performance guarantee for real-time tasks with

varying computation times. In Proc. IEEE Real-Time and Embedded Technology
and Applications Symposium (RTAS ’95).

[32] Aki Vehtari, Andrew Gelman, Daniel Simpson, Bob Carpenter, and Paul-Christian

Bürkner. 2021. Rank-normalization, folding, and localization: An improved R-hat

for assessing convergence of MCMC (with discussion). Bayesian analysis 16, 2
(2021), 667–718.

[33] Georg von der Brüggen, Nico Piatkowski, Kuan-Hsun Chen, Jian-Jia Chen, and

Katharina Morik. 2018. Efficiently approximating the probability of deadline

misses in real-time systems. In Proc. Euromicro Conference on Real-Time Systems
(ECRTS ’18).

[34] Nils Vreman, Richard Pates, and Martina Maggio. 2022. WeaklyHard.jl: Scalable

Analysis of Weakly-Hard Constraints. In Proc. IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS ’22).

[35] Nils Vreman, Paolo Pazzaglia, Victor Magron, Jie Wang, and Martina Maggio.

2022. Stability of Linear Systems Under Extended Weakly-Hard Constraints.

IEEE Control Systems Letters 6 (2022), 2900–2905.
[36] Michael H Woodbury and Kang G Shin. 1988. Evaluation of the probability of

dynamic failure and processor utilization for real-time systems. In Proc. IEEE
Real-Time Systems Symposium (RTSS ’88).

https://ardupilot.org/
https://doi.org/10.5281/zenodo.4118058
https://doi.org/10.5281/zenodo.4118058
https://scipy.org/

	Abstract
	1 Introduction
	2 The System Model
	2.1 Configurations

	3 Unit Intervals and Markov Chains
	3.1 Unit intervals
	3.2 Markov chain preliminaries

	4 The Main Results
	4.1 Two probabilistic transitions
	4.2 The infinite and finite-state Markov chains
	4.3 M represents BS
	4.4 Weakly-hard constraints

	5 Evaluation
	5.1 Ground truth computation
	5.2 Sampling methodology
	5.3 Accuracy of the sampling method
	5.4 Performance and scalability of sampling
	5.5 Case study: rover control system

	6 Related Work
	7 Conclusion and Future Work
	Acknowledgments
	References

